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Texture formation in carbonaceous mesophase fibers

J. Yan and A. D. Rey*
Department of Chemical Engineering, McGill University, 3610 University Street, Montreal, Canada PQ H3A 2B2

~Received 2 October 2001; published 21 February 2002!

Carbonaceous mesophases are discotic nematic liquid crystals that are spun into high performance carbon
fibers using the melt spinning process. The spinning process produces a wide range of different fiber textures.
Planar polar~PP! and planar radial~PR! textures are two ubiquitous ones. This paper presents theory and
simulation of the texture formation process using the Landau-de Gennes mesoscopic theory for discotic liquid
crystals. The computed PP and PR textures phase diagram, given in terms of temperature and fiber radius, is
presented to establish the processing conditions and geometric factors that lead to the selection of these
textures. Thin fibers adopt the PR texture, while thicker fibers and higher temperatures adopt the PP texture.
The influence of elastic anisotropy to the formation of textures and structure is thoroughly characterized.
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I. INTRODUCTION

Carbonaceous mesophases, such as coal tar and petro
pitches, are used in the industrial manufacturing of high p
formance carbon fibers. This relatively new carbon fiber
more competitive than the conventional one made from
acrylic precursors in several application areas@1#. The ther-
modynamic phase that describes carbonaceous mesop
is the discotic nematic liquid crystal~DNLC! state@2#. Liq-
uid crystals are intermediate~i.e., mesophase! phases, typi-
cally found for anisodiametric organic molecules, which e
ist between the higher temperature isotropic liquid state
the lower temperature crystalline state. Carbonaceous
sophases are composed of disklike molecules. Figur
shows the molecular geometry, positional disorder, a
uniaxial orientational order of discotic nematic liquid cry
tals. The partial orientational order of the molecular unit n
mal u is along the average orientation or directorn (n•n
51). The name discotic distinguishes the molecular geo
etry and the name nematic identifies the type of liquid cr
talline orientational order.

The industrial fabrication of mesophase carbon fiber us
the conventional melt spinning process typically produ
micrometer-sized cylindrical filaments whose cross-sectio
area displays a variety of transverse textures@3#, that is, dif-
ferent spatial arrangements of the average orientationn on
the plane perpendicular to the fiber axis. The select
mechanisms that drive the texture formation pattern are
present not well understood, but due to the strong struct
properties correlations, they are essential for product opt
zation @1,3#.

A question of fundamental importance to the melt sp
ning of carbonaceous mesophases is to determine how e
and viscous mechanisms affects the fiber process-indu
structuring and cross-sectional fiber textures’s select
When considering elastic mechanisms, it is necessary
identify the three fundamental elastic modes of these m
rials. Figure 2 shows the three types of elastic deformatio
splay, twist, and bend, and the corresponding modulusK11,
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K22, andK33, known as Frank elasticity constants@4#. The
bulk free energy density is given by

f n5 1
2 K11~“•n!21 1

2 K22~n•“3n!21 1
2 K33un3~“3n!u2.

~1!

Thermodynamic stability requires,

K11.0; K22.0; K33.0. ~2!

In contrast to rodlike nematics, for disclike nematics t
bending disc’s trajectories give rise to a splay deformati
and the splaying disc’s trajectories give rise to a bend de
mation; by disc trajectory it means the curve locally orthog
nal to the director. For DNLCs, the following inequalitie
hold @5#:

K22.K11; K22.K33, ~3!

which indicates that planar deformations are favored.
It is known @3,6# that the observed cross-section fiber te

tures belong to a numbers of families, such as onion, rad
mixed, PAN-AM, to name a few. Figure 3 shows the sch
matics of two cross-sectional textures most commonly s
in mesophase carbon fibers. The dashed line indicates
trajectories of the molecular planes, Fig. 3~a! shows the pla-

FIG. 1. Definition of director orientation of a uniaxial discot
nematic liquid crystalline material. The directorn is the average
orientation of the unit normals to the disklike molecules in a d
cotic nematic phase.
©2002 The American Physical Society13-1
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nar radial~PR! texture, in which only the pure bend mod
exists with one defect in the center of strengths511, and
Fig. 3~b! shows the planar polar~PP! texture, in which two
modes of deformation, splay and bend, exist with two defe
of the strengths511/2. Figures 3~c! and 3~d! are the corre-
sponding director fields’s schematics of the PP and PR
tures. The defects arise due to the constraints of tange
boundary conditions and a planar two dimensional~2D! ori-
entation field. Defects are singularities in the director fie
and are characterized by strength~1/2,1, . . . ! and sign~6!
@4#. The strength of a disclination determines the amoun
orientation distortion and the sign corresponds to the se
~i.e., clockwise or anticlockwise! of orientation rotation
while circling the defects. Since the energy of a defect sca
with the square of the defect strength@4#, the planar polar
texture would seem to emerge, so as to minimize the ela
energy associated with orientation distortions. In additi
defects of equal sign repel each other, while defects of
ferent sign attract. As shown below, in the PP texture, def
defect interaction plays a critical role in the geometry of t
texture. For discussions and references on rodlike nema
in cylindrical geometries, see for example@7,8#. The phase
diagram of nematic textures in cylindrical geometries a
function of temperature and fiber radius in the absence
elastic anisotropy has been given by Sonnet, Kilian, a
Hess@9#.

Theory and simulation of liquid crystalline materials co
tinues to be performed using macroscopic, mesoscopic,
molecular models@4#. Macroscopic models based on th
Leslie-Ericksen director equations are unsuitable to simu
texture formation because defects are singularities in the
entation field. On the other hand, mesoscopic models ba
on the second moment of the orientation distribution fu
tion is well suited to capture the formation of liquid crysta
line textures, because defects are nonsingular solutions t
governing equations. A very well established mesosco
model in liquid crystalline materials is based on t
Landau–de Gennes free energy@4# and is used in this paper.

The objectives of this paper are:
~1! To simulate the transient formation of the PR and

texture that is commonly observed during the melt spinn
of carbonaceous mesophase.

FIG. 2. Schematics of the elastic splay~left!, twist ~center!, and
bend ~right! deformation for uniaxial discotic nematics. Note th
the splay~bend! mode involves bending~splaying! of the disk’s
trajectories, in contrast to the case of uniaxial rodlike nematics
disk trajectory is a curve locally orthogonal to the director. Adap
from Ref. @6#.
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~2! To characterize the mechanisms of PR and PP tex
selection in DNLCs.

~3! To compute a texture phase diagram, given in terms
temperature and fiber radius, and to establish the geom
and operating conditions that lead to the characteristic
tures.

~4! To discuss the influence of elastic anisotropy (K11
ÞK22ÞK33) on the formation of fiber texture.

This paper is organized as follows. Section II presents
theory and the Landau–de Gennes governing equations.
tion III discusses the computational methods to solve
model. Section IV shows the numerical solutions of o
model, and also, discusses the characteristics of the tex
phase diagram and the effect of elastic anisotropy. Fin
conclusions are presented.

II. THEORY AND GOVERNING EQUATIONS

In this section, we present the Landau–de Gennes the
for nematic liquid crystals, and the parametric equations u
to describe mesophase fiber texture formation. As mentio
above, the theory is well suited to simulate texture format
since defects are nonsingular solutions to the govern
equations.

A. Definition of orientation and alignment

The microstructure of DNLCs is characterized by
second-order symmetric and traceless tensor, known ge
ally as tensor order parameterQ @10#,

A
d

FIG. 3. Schematics of two cross-sectional textures most c
monly seen in mesophase carbon fibers. The dashed line indic
the trajectories of the molecular planes,~a! shows the planar radia
~PR! texture, in which only the pure bend mode exists with o
defect in the center of strengthS511, and~b! shows the planar
polar ~PP! texture, with splay and bend, and two defects of t
strengthS511/2. ~c! and~d! are the corresponding director field
schematics of the PP and PR textures. The defects arise due t
constraints of tangential boundary conditions and a planar 2D
entation field.
3-2



n-
d
-

e

-

a
lan

te

en

h
m

en
ib

gy
-

ns.
eri-
n-

the

r-
nd
n’s
elow
pec-

Cs

TEXTURE FORMATION IN CARBONACEOUS MESOPHASE . . . PHYSICAL REVIEW E 65 031713
Q5SS nn2
1

3
I D1

1

3
P~mm2 ll !, ~4!

where the following restrictions apply:

Q5QT; tr~Q!50; 2 1
2 <S<1; 2 3

2 <P< 3
2 , ~5!

n•n5m•m5 l• l51; nn1mm1 ll5I5F 1 0 0

0 1 0

0 0 1
G .

~6!

The uniaxial directorn corresponds to the maximum eige
valuemn5 2

3 S, the biaxial directorm corresponds the secon
largest eigenvaluemm5 1

3 (S2P), and the second biaxial di
rector l(5n3m) corresponds to the smallest eigenvaluem l
52 1

3 (S1P). The orientation is defined completely by th
orthogonal director triad~n,m,l!. The magnitude of the
uniaxial scalar order parameterS is a measure of the molecu
lar alignment along the uniaxial directorn, and is given as
S5 3

2 (n•Q•n). The magnitude of the biaxial scalar order p
rameterP is a measure of the molecular alignment in a p
perpendicular to the direction of uniaxial directorn, and is
given asP5 3

2 (m•Q•m2 l•Q• l). On the principal axes, the
tensor order parameterQ is represented as

Q5F 2 1
3 ~S2P! 0 0

0 2 1
3 ~S1P! 0

0 0 2
3 S
G . ~7!

Both S and P are positive for normal DNLCs. The
Landau–de Gennes model uses the tensor order parame
describe nematic ordering. According to Eq.~7!, the model is
able to describe biaxial (SÞ0, PÞ0), uniaxial (SÞ0, P
50), and isotropic (S50, P50) states.

B. Landau–de Gennes mesoscopic model for liquid crystalline
materials

According to the Landau–de Gennes model, the bulk
ergy density of nematic liquid crystals~NLC! in the absence
of external fields is given by@11,12#

f b5 f 01 f s1 f l , ~8a!

f l5 f l21 f l3 , ~8b!

f s5AQ:Q1BQ:~Q•Q!1C~Q:Q!2, ~8c!

f l25L1“Q:~“Q!T1L2~¹•Q!•~“•Q!, ~8d!

f l35L3Q:~“Q:“Q!1¯ , ~8e!

where A,B,C,L1 ,L2 ,L3 ,... arecoefficients of the specified
terms.f 0 is the free energy density of the isotropic state. T
term is related to the conventional thermodynamic para
eters, such as temperature and pressure, and independ
Q. f s is the short-range energy density, which is respons
03171
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for the nematic-isotropic phase transition,f l is the long-
range energy,f l2 is the second-order long-range free ener
density, andf l3 is the third-order contribution to the long
range free energy density. By assuming thatQ is uniaxial
and comparingf l2 with f n @Eq. ~1!# it is found that K11
5K33. To remove this restrictionf l3 must be nonzero. It is
known that there are six different third-order expressio
For rodlike nematics it was shown that representative exp
mental$Kii %; ( i i 511,22,33) data is well captured by retai
ing only the termL3QabQgd,aQgd,b in the f l3 expression
@13#. The same approach will be used in this paper. Using
one parameter Doi model forf s @14#, the dimensionless free
energy densities are given by

f s* 5
3

U
@ 1

2 ~12 1
3 U !Q:Q2 1

3 UQ:~Q•Q!1 1
4 U~Q:Q!2#,

~9a!

f l2* 5
L1

2ckT* R2 @“̃Q]~“̃Q!T#1
L2

2ckT* R2 ~“̃•Q!•~“̃•Q!,

~9b!

f l3* 5
L3

2ckT* R2 @Q:~“̃Q:“̃Q!#, ~9c!

whereU is the nematic potential, which is inversely propo
tional to the temperature in a thermotropic liquid crystal, a
c, k, T* are the number density of discs, the Boltzman
constant, and an absolute reference temperature just b
the isotropic-nematic phase transition temperature, res
tively. Comparing Eq.~1! the Landau coefficients~LC! $Li%,
i 51,2,3 are related to the Frank’s constant of uniaxial L
in the following way@12,15,16#:

L15
3K222K111K33

6S2 , ~10a!

L25
K112K22

S2 , ~10b!

L35
K332K11

2S3 , ~10c!

K115S2~2L11L22 2
3 SL3!, ~11a!

K225S2~2L12 2
3 SL3!, ~11b!

K335S2~2L11L21 4
3 SL3!. ~11c!

Using Eqs.~11! and inequalities~2! the following restric-
tions have to be obeyed under uniaxial ordering:

2L11L22 2
3 SL3>0; ~12a!

2L12 2
3 SL3>0; ~12b!

2L11L21 4
3 SL3>0. ~12c!
3-3
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In addition, since twist is the highest elastic constant in D
LCs, the Landau coefficientL2 is negative@10,17#,

L2,0. ~13!

Using the classical gradient flow model, the tim
dependent equation in terms ofQ and“Q is found to be@14#

2g~Q!
dQ

dt
5

dF

dQ
5S ] f b

]Q
2“•

] f b

]“QD @s#

, ~14!

where@s# indicates the symmetric and traceless,g(Q) is the
rotational viscosity coefficient, anddF/dQ is the functional
derivative of the total energyF. Substituting Eq.~9! into Eq.
~14! yields the following governing equations ofQ(x,t):

dQ

dt
526DrF] f b*

]Q
2“•

] f b*

]“QG @s#

526Dr H 3

U
@~12 1

3 U !Q

2U„Q•Q2 1
3 ~Q:Q!I …1U~Q:Q!Q#

1
L3

2ckT* @~“Q:“Q!2 1
3 tr~“Q:“Q!I #J

16Dr S L1

ckT*
“

2Q1
L2

2ckT* H“~“•Q!1@“~“•Q!#T

2
2

3
tr@“~“•Q!#I J 1

L3

ckT* @~“•Q!•“Q#

1
L3

ckT* @Q:~““Q!# D , ~15a!

Dr'Dr

1

~12~3/2!Q:Q!2 , Dr5
ckT

6h
, ~15b!

whereDr is the microstructure dependent rotational diffus
ity, Dr is the preaveraged rotational diffusivity or isotrop
diffusivity, which is independent ofQ, andh is a viscosity.
The relation betweenDr andg(Q) can be read off by com
paring Eq.~14! and ~15a!. Nondimensioning Eq.~15! yields

dQ

d t̃
5S1L , ~16a!

S52
1

U

3

U
@12 3

2 ~Q:Q!#22

3@~12 1
3 U !Q•U„Q•Q2 1

3 ~Q:Q!I …

1U~Q:Q!Q#, ~16b!
03171
-
L5

j2

R2

1

U
@12 3

2 ~Q:Q!#22

3S ¹̃2Q1
L̃2

2
$“̃~“̃•Q!1@“̃~“̃•Q!#

2 2
3 tr@“̃~“̃•Q!#I %1L̃3@~“̃•Q!•“̃Q#

1L̃3@Q:~“̃“̃Q!# D 2
j2

R2

1

U

L̃3

2
@12 3

2 ~Q;Q!#22

3@~“̃Q:“̃Q!2 1
3 tr~“̃Q:“̃Q!I #, ~16c!

where t̃ 5t3ckT* /h is dimensionless time,U53T* /T is
dimensionless temperature,j5(L1 /ckT* )1/2 is molecular
length scale,L̃25L2 /L1 and L̃35L3 /L1 are ratios of elastic
coefficients, andR is geometry length scale~i.e., the fiber
radius!, S is the short-range contribution, andL is the long-
range distribution.

The dimensionless parameters of the model areU, R
5R/j, L̃2 , andL̃3 . The nematic potentialU is a dimension-
less temperature that controls the equilibrium order para
eterSeq at the phase transition. According to the Doi mod
of the short-range energy, the temperature dependence oSat
equilibrium is @14#

Seq5
1
4 1 3

4 S 12
8

3U D 1/2

, ~17a!

U5
3T*

T
, ~17b!

whereT* is a reference temperature just below the isotrop
nematic phase transition temperature such as we defined
fore. For U,8/3 the stable phase is isotropic, for 8/3<U
<3 there is biphasic equilibrium, and for higher values ofU
the phase is uniaxial nematic. In this paper, we have u
2.7<U<6.55. The parameterR5R/j is the ratio of the fi-
ber radius to the internal length scalej. The internal length
scale represents the characteristic size of a defect core a
usually much smaller than the system sizeR. In this paper,
we have used 0,R,250. WhenR!1, long-range energy
dominates, spatial gradients are costly and homogene
states are selected. On the other hand, whenR@1, long-
range elasticity is insignificant with respect to short-ran
elasticity and defects proliferate, since spatially, nonhomo
neous states are energetically not costly. The elastic cons
ratiosL̃25L2 /L1 andL̃35L3 /L1 are two measures of elasti
anisotropy. WhenL̃2 ,L̃3 are equal to zero, all elastic mode
(K11,K22,K33) have the same elastic modulus. To satisfy t
thermodynamic restrictions Eqs.~12! and ~13!, we set L̃2

520.5 throughout and limit the range ofL̃3 to 21.125
<SL̃3<2.25. The governing Eq.~16! is solved in the circle
( r̃ 50.5) with the following boundary conditions:

t* .0, r̃ 50.5, Q5Qeq,
3-4
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Qeq5Seq~aa2 1
3 d!, ~18!

where r̃ is the dimensionless radial distance (r̃ 5r /R), and
r̃ 50 is the center of the computational domain~i.e., fiber
axis!. The Dirichlet boundary condition sets the eigenvalu
of uniaxial tensor order parameter equal to its equilibriu
value (S5Seq), and the distinct eigenvectorn perpendicular
to the azimuthala direction of the cylindrical coordinate
system (r̃ ,a). The symbola represents the unit vector alon
the azimuthala direction. The initial conditions are

t* 50, Qini5Sini~nininini2
1
3 d!1 1

3 Pini~minimini2 l inil ini!,
~19!

whereSini andPini are infinitesimally small random number
andnini , mini , andl ini are corresponding three random eige
vectors. The initial conditions represent an isotropic st
(S50, P50) with thermal fluctuations in order~S,P! and
orientation~n,m,l!.

III. COMPUTATIONAL METHODS

The model Eq.~16! is a set of six coupled nonlinear par
bolic partial differential equations, solved in the circle, su
jected the auxiliary conditions@see Eqs.~18! and ~19!#. The
equations are solved using Galerkin finite elements w
Lagrangean linear basis functions for spatial discretiza
and a fifth-order Runge-Kutta-Cash-Karp time adapt
method. Convergence and mesh-independence were e
lished in all cases using standard methods. Spatial disc
zation was judiciously selected taking into account the len
scale of our model. As mentioned above, the Landau
Gennes model for nematic liquid crystals has an exte
length scaleLe and an internal length scaleLi as follows:

Le5R, ~20a!

Li5j5S L1

ckT* D 1/2

, ~20b!

where R is the fiber radius, and where in the length sc
obeysLe@Li . If defects are present, the mesh size has to
commensurate withLi . It should be noted that the extern
length scale governs the direction’s orientation~n,m,l! while
the internal length scale governs the scalar order param
~S,P!. In addition, care should be taken to select an appro
ate time integration technique to overcome the intrinsic st
ness of the system. The model equations contain an inte
time scalet i and an external time scalete . The internal time
scale governs the evolution of the scalar order parame
~S,P! and is given by

t i5
h

ckT*
. ~21!

A much longer external time scalete controls the evolution
of the directors and is given by

te5
hLe

2

L1
. ~22!
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The selected adaptive time integration scheme is able to
ficiently take into account the stiffness that rises due to
disparity between time scalet i!te .

IV. RESULTS AND DISCUSSION

To visualize the fiber textures we use the solution ten
Q, and represent the discotic mesophase by a cuboiC
whose axes are normal to the directors~n,m,l! and sides are
proportional to its eigenvalues. SinceQ has negative eigen
values, we useM5Q1 1

3 I instead ofQ.

A. Representative planar radial and planar polar textures

Figures 4 and 5 show visualizations of representative
and PR obtained by solving Eqs.~16!. Figures 4~a! and 5~a!
shows the computed texture phase diagram, given in term
nematic potential 1/U5T/3T* as a function of dimension
less fiber radiusR5R/j, with the auxiliary conditions~18!

and ~19! and 2.7<U<6.55, 0<R<300, L̃2520.5, L̃350.
The phase diagram identifies the stability of the textures a
function of temperature and fiber radius. Nanofibers fav
the PR texture while lower temperature and larger fiber
vors the PP texture. The full line indicates the PP and
texture transition line, defined by critical values of the te
perature and fiber size (1/Uc ,Rc). For the parameters use
here a good fit to the transition line is

21

1

U
2

3

8

5~R2Rc!
n; n50.65, Rc537. ~23!

For largeU, the transition is effected byR ~long range!, and
for largeR, the transition is effected byU ~short range!. At
large U the long-range effects at the transition inclu
changes of director distortions and biaxiality. At largeR the
short range effects on the transition include changes in
scalar order parameter and defect core size. The dots on
diagrams represent the parametric conditions applied in
taining the solution shown in Figs. 4~b! and 5~b!. For U
,8/3, the fiber is isotropic.

Figure 4~b! is a representative typical steady state visu
ization of M corresponding to the PP texture forU56.55,
R567, L̃2520.5, L̃350. It clearly shows the molecula
orientation of planar polar texture, with the twos511/2
defects collinear with the fiber axis. The orientation of t
defect-defect axis is arbitrary since the system evolves fr
an isotropic state that contains no texture information. T
simulations show the bending distortions close to the t
defects and an aligned region between the two defects.
ures 4~c!, and 4~d! shows a gray-scale plot and a surface p
of the uniaxial scalar order parameterS as a function of
dimensionless position (x* ,y* ). In the gray-scale plot a low
order parameter (S'0) is black and high order paramete
(S'1) is white. The dark dots in the figure correspond to t
two s511/2 defects. The narrow peaks in the surface pl
indicate the difference in scale between defect cores an
ber radius. At the core of defectS is small, as expected
Figures 4~e! and 4~f! show the corresponding gray-scale a
3-5
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FIG. 4. ~a! Computed texture phase diagram, given in terms of nematic potential 1/U5T/3T* as a function of dimensionless fiber radiu

R5R/j, with the auxiliary conditions~18! and~19! and 2.7<U<6.55, 0<R<300,L̃2520.5, L̃350. The full line indicates the PP and P
texture transition line, defined by critical values of the temperature and fiber size (1/Uc ,Rc). The dot on the diagrams represents t
parametric conditions applied in obtaining the solution shown in~b!. ~b! Representative steady state visualization ofM corresponding to the

PP texture forU56.55,R567, L̃2520.5, L̃350. ~c!,~d! Gray-scale plot and a surface plot of the uniaxial scalar order parameterS as a
function of dimensionless position (x* ,y* ). In the gray-scale plot a low order parameter (S'0) is black and high order parameter (S
'1) is white.~e!,~f! Gray scale and surface plots of the biaxial order parametersP as a function of dimensionless position (x* ,y* ). In the
gray-scale plot,P'0 corresponds to black andP'1 to white.
031713-6



s

R
he
eter

lar

n

TEXTURE FORMATION IN CARBONACEOUS MESOPHASE . . . PHYSICAL REVIEW E 65 031713
FIG. 5. ~a! Computed texture phase diagram, given in terms of nematic potential 1/U5T/3T* as a function of dimensionless fiber radiu

R5R/j, with the auxiliary conditions~18! and~19! and 2.7<U<6.55, 0<R<300,L̃2520.5, L̃350. The full line indicates the PP and P
texture transition line, defined by critical values of the temperature and fiber size (1/Uc ,Rc). The dot on the diagrams represents t
parametric conditions applied in obtaining the solution shown in~b!. ~b! Representative steady state visualization of tensor order param

M corresponding to the PR texture forU52.80,R567, L̃2520.5, L̃350. ~c!,~d! Gray-scale plot and a surface plot of the uniaxial sca
order parameterS as a function of dimensionless position (x* ,y* ). In the gray-scale plot a low order parameter (S'0) is black and high
order parameter (S'1) is white.~e!,~f! Gray-scale and surface plots of the biaxial order parametersP as a function of dimensionless positio
(x* ,y* ). In the gray-scale plot,P'0 corresponds to black andP'1 to white.
031713-7
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surface plots of the biaxial order parametersP as a function
of dimensionless position (x* ,y* ). In the gray-scale plot
P'0 corresponds to black andP'1 to white. The figure
clearly shows the biaxial eigenvalues ofQ at the two defect
cores. The corresponding surface plot shows that at the
fects coreP'0.4. Far from the disclination the state
uniaxial. Biaxiality arises because it reduces long range e
ticity. Figure 5~b! shows a representative typical steady st
visualization of the tensor order parameterM corresponding
to the PR texture forU52.80, R567, L̃2520.5, L̃350.
There is only one defect in the center, with the strengts
511. The only deformation mode exist in PR texture
bend (K33), because the average molecular trajector
shown on the visualization denote splay. Figures 5~c! and
5~d! shows a gray-scale plot and a surface plotS as a func-
tion of dimensionless position (x* ,y* ). It is shown that in
the center of the fiberS is small. Figures 5~e!–5~f! show that
P increases at the center of fiber. At the disclination cen
the state is almost negatively uniaxial, and the core is biax
Far from the disclination the state is uniaxial.

B. Effect of twist-driven anisotropy on fiber texture selection

In this section we setL̃350 and characterize the effect o
L̃2 on fiber texture selection. The magnitude ofL̃2 deter-
mines the difference between twist mode (K22) and the
equivalent splay-bend modes (K115K33). The thermody-
namically consistent range ofL̃2 is found from Eqs.~12! and
~13!. To characterize the role of twist elastic anisotropy
texture selection mechanisms the following dimensionl
total energyF* per unit length is analyzed,

F* 5
F

ckT*
A* 5E

A*
~ f s* 1 f t* !dA* , ~24!

whereA* is the area of the computational domain~circle:
r * 50.5!, F is the total energy density. Figure 6 shows t
dimensionless short-range energy~top!, long-range energy
~middle! and total energy~bottom! as a function of dimen-
sionless fiber radiusR, for U53.05, L̃250 ~left column!
andU53.05,L̃2520.5 ~right column!. The discontinuity at
R5Rc corresponds to the texture PP⇔PR transition. Since
we perform transient simulations only stable solutions
captured. The left branch of each plot corresponds to the
texture, and the right bottom branch corresponds to the
texture. The main effect of decreasingL̃2 is an horizontal
shift of the energy profiles towards smallerR values and
henceRc(L̃250).Rc(L̃2520.5). IncreasingR decreases
short- and long-range energy in the PR textures, but o
long range in the PP textures. The rate of these chan
increases with decreasingL̃2 .

Figure 7 shows the corresponding texture phase diag
for L̃250 and L̃2520.5. The phase transition line ofL̃2

520.5 shifts left and up in comparison to theL̃250 case.
The figure shows that significant influence ofL̃2 on the tex-
ture transition only exists for intermediate values ofU and
R. At low R the transition line diverges and is independe
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of U ~i.e., vertical line!. Since at lowR the transition is
sensitive to long-range elasticity, and the main difference
the PR and PP textures is the difference between splay
bend deformations, no significant effect is detected beca
L̃2 does not introduce splay-bend anisotropy. On the ot
hand, at highR the transition line asymptotes to nemati
isotropic transition line and the texture transition is indepe
dent of long range in general, including theL̃2 contribution.

Figure 8 shows the influence ofL̃2 on the defect core
structure for the PR and PP textures, in terms of the th
eigenvalues ofQ as a function of distance. The PR has a
muthal symmetry in the orientation field and the PP has m
ror symmetry with respect to the line connecting the twos
511/2 defects. Thus for the PR we show the eigenval
along the radial direction while for the PP texture we sh
the eigenvalues as a function of dimensionless distanceb*
along a line that is perpendicular to the line connecting
two s511/2 defects and goes through one of the tw
equivalent defects. Figures 8~a! and 8~b! show the three ei-
genvalues of the tensor order parameterQ as a function of
dimensionless distanceb* for U56.55, R567, L̃350.0,
L̃250.0 ~a!, and U56.55, R567, L̃350.0, L̃2520.5 ~b!,
corresponding to the PP textures. In both cases the sta
defect center is uniaxial withmn5mm.0, m1,0. The main
effect ofL2 is the decrease in defect core size. Figures 8~b!–
8~d! show the three eigenvalues of the tensor order param
Q as a function of dimensionless radial distancer * for U

52.8, R567, L̃250.0, L̃350.0 ~b!, and U52.8, R567,
L̃2520.5, L̃350.0 ~d!, corresponding to the PR textures.
both cases the state at defect center is uniaxial withmn
5mm.0, m1,0. The main effect ofL2 is the decrease in
defect core size. To analyze the computed defect core
tures, the long-range and short-range energies given in
~8! are expressed in terms of eigenvalues and eigenvec
For brevity we only discuss the following expression for t
PR texture:

f s523Bmnmm~mn1mm!12A~mn
21mnmm1mm

2 !

14C~mn
21mnmm1mm

2 !2, ~25a!

f l5
L1

2 Fmn,r
2 1mm,r

2 1~mn,r1mm,r !
21

2~mn2mm!

r 2 G
1

L2

2 Fmn,r1
~mn2mm!

r G2

, ~25b!

wherem i ( i 5m,n) are two independent eigenvalues of t
tensorQ, andm i ,r5]m i /]r ( i 5m,n). At the defect center
the state is uniaxial@9#, with mn5mm.0, m1,0, since oth-
erwise the long range energy diverges. In addition the co
mon term betweenL1 andL2

S L11
L2

2 D Fmn,r1
~mn2mm!

r G2

~26!
3-8
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FIG. 6. Dimensionless short-range energy~top!, long-range energy~middle!, and total energy~bottom! as a function of dimensionles

fiber radiusR, for U53.05, L̃250 ~left column! andU53.05, L̃2520.5 ~right column!. The discontinuity atR5Rc corresponds to the
texture PP⇔PR transition.
lle
w

n

ia-
res

As
shows that whenL2 is negative sharper gradients and sma
defect core sizes can be accommodated, as observed
comparing Figs. 8~b! and 8~c!.

C. Effect of splay-bend anisotropy on fiber texture selection

In this section we characterize the effect of splay-be
elastic anisotropy, usingL̃2520.5 and L̃3Þ0. Figure 9
03171
r
hen

d

shows the texture phase diagram in terms of 1/U andR, for

three values ofL̃3 . The figure shows that asuL̃3u increases
the texture transition line shifts up and left in the phase d
gram. The texture transition lines retain the same featu
regardless of the value ofuL̃3u, such that at lowerR the
transition lines diverges and at highR the transition line
asymptotes towards the nematic-isotropic transition line.
3-9
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before, at highR long range is insignificant and hence th
transition lines coalesce. On the other hand, at lowR the
figure shows that the diverging transition lines do not c
lesce and the effect ofL̃3 persists. The reason is that plan
uniaxial textures are sensitive to the splay-bend anisotr
that is created whenL̃3Þ0.

D. Effect of splay-bend anisotropy on planar polar textures

The geometry of the PP textures is defined by the de
separation distanced. Using simple arguments and the Fra
energy of uniaxial NLCs@see Eq.~1!# we can establish the
dependence of defect separation distanced as a function of
splay-bend anisotropyd5d(K112K33) for certain limiting
conditions of the vector model, which is then be tested by
numerical solutions to tensor model@Eqs.~16!#. In this tex-
ture the director is tangential to the boundary.

1. Predictions of the vector model

The effect of splay-bend anisotropy on isolated wed
disclination has been characterized@18#. The free energy
density f n around a defect may be written as@18#

f n5K

2

wa
2@11« cos 2~w2a!#

r 2 , ~27!

wherew,a are the orientation angle and the polar angle a
point in polar cylindrical coordinates,wa5]w/]a, K
5 1

2 (K111K33), and«5(K112K33)/(K111K33) is the elas-
tic anisotropy. Minimization off n leads to

waa52«@waa cos 2~w2a!1wa~22wa!sin 2~w2a!#,

~28!

FIG. 7. Computed texture phase diagram, given in terms
nematic potential 1/U5T/3T* as a function of dimensionless fibe
radius R5R/j, with the auxiliary conditions~18! and ~19! and

2.7<U<6.55, 0<R<300, L̃350, L̃250, and L̃2520.5. The

phase transition line ofL̃2520.5 shifts left and up in compariso

to theL̃250 case. The figure shows that significant influence ofL̃2

on the texture transition only exists for intermediate values ofU and
R.
03171
-

y

ct

e

e

a

wherewaa5]2w/]a2. Analytical limiting defect solutions to
Eq. ~28! for wedges511/2, 11 disclinations can then be
used to estimated(«).

(i) Negligible bend: K33→0, «→11. A solution where
the director field trajectories are all circles or parallel lin
around thes511/2 defect is

2
p

2
,a,

p

2
, w50 and

p

2
,a,

3p

2
, w5a2

p

2
~29!

and a pair of these solutions cannot satisfy the bound
conditions. On the other hand, thes511 solution: 0,a
,2p, w5a1p/2, satisfies the boundary conditions an
hence in a DNLC fiber geometry thiss511 solution corre-
sponds to the PR texture and the defect separation distan
d(«511)50.

(ii) Splay-bend isotropy: K115K33, «50. Sufficient in-
crease of« produces the decay of thes511 defect into two
s511/2 defects, since some bend is replaced by splay.
location of the defects can be found by using the kno
boundary conditions and performing a disclination force b
ance between the twos511/2 defects and the two image
lying outside the fiber@4#. If l is the distance between eac
s511/2 defect and its image, then to satisfy the direc
boundary conditions atr 5R, the distancex between each
defect and the fiber center is

xR5 l 2. ~30!

In addition a force balance between each defect and the
ages gives

1

2x
5

1

l 1x
1

1

l 1x
, ~31!

which gives the following defect-defect distanced52x:

d* 5
d

2R
5

1

A4 5
. ~32!

(iii) Negligible splay: K11→0, «→21. A defect s5
11/2 solution consists of straight lines director field traje
tories

2
p

2
,a,

p

2
, w5a and

p

2
,a,

3p

2
, w5

p

2
.

~33!

A pair of such solutions can only satisfy the boundary co
ditions at two points when the defects lie next to the fib
rim. Thus some bending is necessary. In addition to m
mize the necessary bending to join straight lines the def
should be as far as possible. In a DNLC fiber geometry
solution that best avoids bending corresponds to the PP
ture andd(«→21)5R2r c . In summary, the inequalities
driven by splay-bend elastic anisotropy are

f

3-10
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FIG. 8. Eigenvalues of the tensor order parameterQ as a function of dimensionless distanceb* for U56.55, R567, L̃350.0, L̃2

50.0 ~a!, andU56.55,R567, L̃350.0, L̃2520.5 ~b!, corresponding to the PP textures. In both cases the state at defect center is u
with mn5mm.0, m1,0. The main effect ofL2 is the decrease in defect core size.~b!–~d! show the three eigenvalues of the tensor ord

parameterQ as a function of dimensionless radial distancer * for U52.8, R567, L̃250.0, L̃350.0 ~b!, and U52.8, R567, L̃2

520.5, L̃350.0 ~d!, corresponding to the PR textures.
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d* ~«→21!51.d* ~«50!5
1

A4 5
d* ~«511!50.

~34!

Splay avoidance leads to the PR texture and bend avoid
to the PP textures. The vector model cannot predict
elastic-anisotropy driven texture transitions because the
fect reactions511↔2s511/2 takes place.

2. Numerical solutions to the tensor model

As mentioned aboveL̃3 defines theK112K33 difference,

K112K33522L3S3. ~35!

WhenL̃3,L̃3c , K11.(11c2)K33, the system will avoid the
splay mode, and the preferred fiber texture is PR;c denotes a
constant. On the other hand, whenL̃3.L̃3c , K11
03171
ce
e
e-

.(11c2)K33, the system will try to avoid the bend mod
and the prefered fiber texture is PP with two defects on
rim collinear with the fiber axis.

Figure 10 shows the dimensionless defect distanced* as

a function of L̃3 for R567, L̃2520.5, andU56.55 ~top!,

5.55 ~middle!, and 4.55~bottom!. The dots forL̃3,L̃3c cor-
respond to the PR texture and the full line corresponds to
PP texture. Note that in Fig. 10 the minimum value ofL̃3 is
set by the thermodynamic stability restriction21.125
<SL̃3 . The horizontal line indicates the case ofL̃350, when
d* 51/A4 5 @19,20#. The numerical solutions confirm the the
oretical result for all values ofU. The computations confirm
the expected inequalities~34!. When L̃3 increases, the dis
tance of two defects also increases and eventually asy
totes to the edge of the fiber. Since the boundary conditi
are fixed the location of defects cannot be right on the ed
The critical value ofL̃35L̃3c'21.2 and is within our com-
3-11
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putational scheme nearly independent ofU. In terms of the
vector model, usingS50.8, the critical splay-bend aniso
ropy is «520.75.

Figure 11~a! shows the visualization of theM tensor order
parameter for L̃3,0 (U56.55, R567, L̃2520.5, L̃3
521.3), corresponding to the PR texture with only be
present. Figure 11~b! shows the visualization of theM tensor
order parameter forL̃3.0 (U56.55, R567, L̃2520.5,
L̃351.5) corresponding to the PP texture with an align
center region and strong splay next to thes511/2 defects,
now located next to the fiber rim.

In contrast to the texture transitions driven by (U,R) dis-
cussed above, the transition here is driven by splay-b
elastic anisotropy (L̃3Þ0). Figure 12 shows the second o
der long-range energy@ f 2l„¹Q)] profile in terms ofL̃3 with
the same parametric conditions of Fig. 10. The dots co
spond to PR and the curve to the PP texture. The dram
change of long-range energy atL̃3521.2 corresponds to the
texture transition point due to splay-bend elastic anisotro
The minimum long-range energy happens whenL̃3 is close
to 0.

V. CONCLUSIONS

A model to describe the texture formation in mesoph
carbon fibers has been developed, implemented, and sh
to replicate commonly observed cross-sectional carbon fi
textures of industrial relevance. The model is based on
classical Landau–de Gennes theory for liquid crystals
has been adapted to describe discotic carbonaceous
sophases. The model is able to predict the formation of
nar radial and planar polar textures. The parametric co
tions of their stability in terms of temperature and fib
radius have been

FIG. 9. Computed texture phase diagram, given in terms
nematic potential 1/U5T/3T* as a function of dimensionless fibe
radius R5R/j, with the auxiliary conditions~18! and ~19! and

2.7<U<6.55, 0<R<300, L̃2520.5. For three values ofL̃3 , the

figure shows that asuL̃3u increases the texture transition line shif
up and left in the phase diagram.
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FIG. 10. Dimensionless defect distanced* as a function ofL̃3

for R567, L̃2520.5, andU56.55 ~top!, 5.55 ~middle!, and 4.55

~bottom!. The dots forL̃3,L̃3c correspond to the PR texture and th
full line corresponds to the PP texture. Note that in the figure

minimum value ofL̃3 is set by the thermodynamic stability restric

tion 21.125<SL̃3 . The horizontal line indicates the case ofL̃3

50, whend* 51/4A5 @19#. The numerical solutions confirm th
theoretical result for all values ofU. The computations confirm the

expected inequalities~33!. When L̃3 increases, the distance of tw
defects also increases and eventually asymptotes to the edge o
fiber. Since the boundary conditions are fixed, the defects’ loca

cannot be right on the edge. The critical value ofL̃35L̃3c'21.2
and is within our computational scheme nearly independent ofU. In
terms of the vector model, usingS50.8, the critical splay-bend
anisotropy is«520.75.
3-12
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computed. Lower temperature and thicker fibers tend to
lect the planar polar texture and higher temperature and
fibers tend to promote the emergence of the planar ra

FIG. 11. ~a! Computed visualization of theM tensor order pa-

rameter forL̃3,0 (U56.55,R567, L̃2520.5, L̃3521.3), cor-
responding to the PR texture with only bend present.~b! Computed

visualization of the M tensor order parameter forL̃3.0 (U

56.55, R567, L̃2520.5, L̃351.5) corresponding to the PP tex
ture with an aligned center region and strong splay next to ths
511/2 defects, now located next to the fiber rim.
03171
e-
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texture, in agreement with Ref.@9#. The influence of elastic
anisotropy to the fiber texture formation is thoroughly d
cussed. It is found that splay-bend anisotropy influences
fiber texture much more than the twist term. Splay~bend!
avoidance leads to the planar radial~polar! texture. The im-
portance of splay-bend anisotropy is completely explain
by the Frank elastic theory. The results presented in this
per contribute towards a better understanding of the p
ciples that control the cross-section texture selection du
the melt spinning of mesophase carbon.
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FIG. 12. Second-order long-range energy@ f 2l(“Q)# profile as a

function of L̃3 with the same parametric conditions of Fig. 10. T
dots correspond to PR and the curve to the PP texture. The dram

change of long-range energy atL̃3521.2 corresponds to the tex
ture transition point due to splay-bend elastic anisotropy. The m

mum long-range energy happens whenL̃3 is close to 0.
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